The Homeoprotein Nanog Is Required for Maintenance of Pluripotency in Mouse Epiblast and ES Cells
نویسندگان
چکیده
Embryonic stem (ES) cells derived from the inner cell mass (ICM) of blastocysts grow infinitely while maintaining pluripotency. Leukemia inhibitory factor (LIF) can maintain self-renewal of mouse ES cells through activation of Stat3. However, LIF/Stat3 is dispensable for maintenance of ICM and human ES cells, suggesting that the pathway is not fundamental for pluripotency. In search of a critical factor(s) that underlies pluripotency in both ICM and ES cells, we performed in silico differential display and identified several genes specifically expressed in mouse ES cells and preimplantation embryos. We found that one of them, encoding the homeoprotein Nanog, was capable of maintaining ES cell self-renewal independently of LIF/Stat3. nanog-deficient ICM failed to generate epiblast and only produced parietal endoderm-like cells. nanog-deficient ES cells lost pluripotency and differentiated into extraembryonic endoderm lineage. These data demonstrate that Nanog is a critical factor underlying pluripotency in both ICM and ES cells.
منابع مشابه
Nanog Overcomes Reprogramming Barriers and Induces Pluripotency in Minimal Conditions
Induced pluripotency requires the expression of defined factors and culture conditions that support the self-renewal of embryonic stem (ES) cells. Small molecule inhibition of MAP kinase (MEK) and glycogen synthase kinase 3 (GSK3) with LIF (2i/LIF) provides an optimal culture environment for mouse ES cells and promotes transition to naive pluripotency in partially reprogrammed (pre-iPS) cells. ...
متن کاملSmad2 is essential for maintenance of the human and mouse primed pluripotent stem cell state.
Human embryonic stem cells and mouse epiblast stem cells represent a primed pluripotent stem cell state that requires TGF-β/activin signaling. TGF-β and/or activin are commonly thought to regulate transcription through both Smad2 and Smad3. However, the different contributions of these two Smads to primed pluripotency and the downstream events that they may regulate remain poorly understood. We...
متن کاملZic3 is required for maintenance of pluripotency in embryonic stem cells.
Embryonic stem (ES) cell pluripotency is dependent upon sustained expression of the key transcriptional regulators Oct4, Nanog, and Sox2. Dissection of the regulatory networks downstream of these transcription factors has provided critical insight into the molecular mechanisms that regulate ES cell pluripotency and early differentiation. Here we describe a role for Zic3, a member of the Gli fam...
متن کاملThe role of pluripotency gene regulatory network components in mediating transitions between pluripotent cell states☆
Pluripotency is a property that early embryonic cells possess over a considerable developmental time span. Accordingly, pluripotent cell lines can be established from the pre-implantation or post-implantation mouse embryo as embryonic stem (ES) or epiblast stem (EpiSC) cell lines, respectively. Maintenance of the pluripotent phenotype depends on the function of specific transcription factors (T...
متن کاملSuppression of Erk signalling promotes ground state pluripotency in the mouse embryo.
Embryonic stem (ES) cells can be derived and propagated from multiple strains of mouse and rat through application of small-molecule inhibitors of the fibroblast growth factor (FGF)/Erk pathway and of glycogen synthase kinase 3. These conditions shield pluripotent cells from differentiation-inducing stimuli. We investigate the effect of these inhibitors on the development of pluripotent epiblas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 113 شماره
صفحات -
تاریخ انتشار 2003